Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Comparative genome analysis of lignin biosynthesis gene families across the plant kingdom.

Identifieur interne : 003680 ( Main/Exploration ); précédent : 003679; suivant : 003681

Comparative genome analysis of lignin biosynthesis gene families across the plant kingdom.

Auteurs : Zhanyou Xu [États-Unis] ; Dandan Zhang ; Jun Hu ; Xin Zhou ; Xia Ye ; Kristen L. Reichel ; Nathan R. Stewart ; Ryan D. Syrenne ; Xiaohan Yang ; Peng Gao ; Weibing Shi ; Crissa Doeppke ; Robert W. Sykes ; Jason N. Burris ; Joseph J. Bozell ; Max Zong-Ming Cheng ; Douglas G. Hayes ; Nicole Labbe ; Mark Davis ; C Neal Stewart ; Joshua S. Yuan

Source :

RBID : pubmed:19811687

Descripteurs français

English descriptors

Abstract

BACKGROUND

As a major component of plant cell wall, lignin plays important roles in mechanical support, water transport, and stress responses. As the main cause for the recalcitrance of plant cell wall, lignin modification has been a major task for bioenergy feedstock improvement. The study of the evolution and function of lignin biosynthesis genes thus has two-fold implications. First, the lignin biosynthesis pathway provides an excellent model to study the coordinative evolution of a biochemical pathway in plants. Second, understanding the function and evolution of lignin biosynthesis genes will guide us to develop better strategies for bioenergy feedstock improvement.

RESULTS

We analyzed lignin biosynthesis genes from fourteen plant species and one symbiotic fungal species. Comprehensive comparative genome analysis was carried out to study the distribution, relatedness, and family expansion of the lignin biosynthesis genes across the plant kingdom. In addition, we also analyzed the comparative synteny map between rice and sorghum to study the evolution of lignin biosynthesis genes within the Poaceae family and the chromosome evolution between the two species. Comprehensive lignin biosynthesis gene expression analysis was performed in rice, poplar and Arabidopsis. The representative data from rice indicates that different fates of gene duplications exist for lignin biosynthesis genes. In addition, we also carried out the biomass composition analysis of nine Arabidopsis mutants with both MBMS analysis and traditional wet chemistry methods. The results were analyzed together with the genomics analysis.

CONCLUSION

The research revealed that, among the species analyzed, the complete lignin biosynthesis pathway first appeared in moss; the pathway is absent in green algae. The expansion of lignin biosynthesis gene families correlates with substrate diversity. In addition, we found that the expansion of the gene families mostly occurred after the divergence of monocots and dicots, with the exception of the C4H gene family. Gene expression analysis revealed different fates of gene duplications, largely confirming plants are tolerant to gene dosage effects. The rapid expansion of lignin biosynthesis genes indicated that the translation of transgenic lignin modification strategies from model species to bioenergy feedstock might only be successful between the closely relevant species within the same family.


DOI: 10.1186/1471-2105-10-S11-S3
PubMed: 19811687
PubMed Central: PMC3226193


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Comparative genome analysis of lignin biosynthesis gene families across the plant kingdom.</title>
<author>
<name sortKey="Xu, Zhanyou" sort="Xu, Zhanyou" uniqKey="Xu Z" first="Zhanyou" last="Xu">Zhanyou Xu</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX</wicri:regionArea>
<placeName>
<region type="state">Texas</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Zhang, Dandan" sort="Zhang, Dandan" uniqKey="Zhang D" first="Dandan" last="Zhang">Dandan Zhang</name>
</author>
<author>
<name sortKey="Hu, Jun" sort="Hu, Jun" uniqKey="Hu J" first="Jun" last="Hu">Jun Hu</name>
</author>
<author>
<name sortKey="Zhou, Xin" sort="Zhou, Xin" uniqKey="Zhou X" first="Xin" last="Zhou">Xin Zhou</name>
</author>
<author>
<name sortKey="Ye, Xia" sort="Ye, Xia" uniqKey="Ye X" first="Xia" last="Ye">Xia Ye</name>
</author>
<author>
<name sortKey="Reichel, Kristen L" sort="Reichel, Kristen L" uniqKey="Reichel K" first="Kristen L" last="Reichel">Kristen L. Reichel</name>
</author>
<author>
<name sortKey="Stewart, Nathan R" sort="Stewart, Nathan R" uniqKey="Stewart N" first="Nathan R" last="Stewart">Nathan R. Stewart</name>
</author>
<author>
<name sortKey="Syrenne, Ryan D" sort="Syrenne, Ryan D" uniqKey="Syrenne R" first="Ryan D" last="Syrenne">Ryan D. Syrenne</name>
</author>
<author>
<name sortKey="Yang, Xiaohan" sort="Yang, Xiaohan" uniqKey="Yang X" first="Xiaohan" last="Yang">Xiaohan Yang</name>
</author>
<author>
<name sortKey="Gao, Peng" sort="Gao, Peng" uniqKey="Gao P" first="Peng" last="Gao">Peng Gao</name>
</author>
<author>
<name sortKey="Shi, Weibing" sort="Shi, Weibing" uniqKey="Shi W" first="Weibing" last="Shi">Weibing Shi</name>
</author>
<author>
<name sortKey="Doeppke, Crissa" sort="Doeppke, Crissa" uniqKey="Doeppke C" first="Crissa" last="Doeppke">Crissa Doeppke</name>
</author>
<author>
<name sortKey="Sykes, Robert W" sort="Sykes, Robert W" uniqKey="Sykes R" first="Robert W" last="Sykes">Robert W. Sykes</name>
</author>
<author>
<name sortKey="Burris, Jason N" sort="Burris, Jason N" uniqKey="Burris J" first="Jason N" last="Burris">Jason N. Burris</name>
</author>
<author>
<name sortKey="Bozell, Joseph J" sort="Bozell, Joseph J" uniqKey="Bozell J" first="Joseph J" last="Bozell">Joseph J. Bozell</name>
</author>
<author>
<name sortKey="Cheng, Max Zong Ming" sort="Cheng, Max Zong Ming" uniqKey="Cheng M" first="Max Zong-Ming" last="Cheng">Max Zong-Ming Cheng</name>
</author>
<author>
<name sortKey="Hayes, Douglas G" sort="Hayes, Douglas G" uniqKey="Hayes D" first="Douglas G" last="Hayes">Douglas G. Hayes</name>
</author>
<author>
<name sortKey="Labbe, Nicole" sort="Labbe, Nicole" uniqKey="Labbe N" first="Nicole" last="Labbe">Nicole Labbe</name>
</author>
<author>
<name sortKey="Davis, Mark" sort="Davis, Mark" uniqKey="Davis M" first="Mark" last="Davis">Mark Davis</name>
</author>
<author>
<name sortKey="Stewart, C Neal" sort="Stewart, C Neal" uniqKey="Stewart C" first="C Neal" last="Stewart">C Neal Stewart</name>
</author>
<author>
<name sortKey="Yuan, Joshua S" sort="Yuan, Joshua S" uniqKey="Yuan J" first="Joshua S" last="Yuan">Joshua S. Yuan</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2009">2009</date>
<idno type="RBID">pubmed:19811687</idno>
<idno type="pmid">19811687</idno>
<idno type="doi">10.1186/1471-2105-10-S11-S3</idno>
<idno type="pmc">PMC3226193</idno>
<idno type="wicri:Area/Main/Corpus">003426</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">003426</idno>
<idno type="wicri:Area/Main/Curation">003426</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">003426</idno>
<idno type="wicri:Area/Main/Exploration">003426</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Comparative genome analysis of lignin biosynthesis gene families across the plant kingdom.</title>
<author>
<name sortKey="Xu, Zhanyou" sort="Xu, Zhanyou" uniqKey="Xu Z" first="Zhanyou" last="Xu">Zhanyou Xu</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX</wicri:regionArea>
<placeName>
<region type="state">Texas</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Zhang, Dandan" sort="Zhang, Dandan" uniqKey="Zhang D" first="Dandan" last="Zhang">Dandan Zhang</name>
</author>
<author>
<name sortKey="Hu, Jun" sort="Hu, Jun" uniqKey="Hu J" first="Jun" last="Hu">Jun Hu</name>
</author>
<author>
<name sortKey="Zhou, Xin" sort="Zhou, Xin" uniqKey="Zhou X" first="Xin" last="Zhou">Xin Zhou</name>
</author>
<author>
<name sortKey="Ye, Xia" sort="Ye, Xia" uniqKey="Ye X" first="Xia" last="Ye">Xia Ye</name>
</author>
<author>
<name sortKey="Reichel, Kristen L" sort="Reichel, Kristen L" uniqKey="Reichel K" first="Kristen L" last="Reichel">Kristen L. Reichel</name>
</author>
<author>
<name sortKey="Stewart, Nathan R" sort="Stewart, Nathan R" uniqKey="Stewart N" first="Nathan R" last="Stewart">Nathan R. Stewart</name>
</author>
<author>
<name sortKey="Syrenne, Ryan D" sort="Syrenne, Ryan D" uniqKey="Syrenne R" first="Ryan D" last="Syrenne">Ryan D. Syrenne</name>
</author>
<author>
<name sortKey="Yang, Xiaohan" sort="Yang, Xiaohan" uniqKey="Yang X" first="Xiaohan" last="Yang">Xiaohan Yang</name>
</author>
<author>
<name sortKey="Gao, Peng" sort="Gao, Peng" uniqKey="Gao P" first="Peng" last="Gao">Peng Gao</name>
</author>
<author>
<name sortKey="Shi, Weibing" sort="Shi, Weibing" uniqKey="Shi W" first="Weibing" last="Shi">Weibing Shi</name>
</author>
<author>
<name sortKey="Doeppke, Crissa" sort="Doeppke, Crissa" uniqKey="Doeppke C" first="Crissa" last="Doeppke">Crissa Doeppke</name>
</author>
<author>
<name sortKey="Sykes, Robert W" sort="Sykes, Robert W" uniqKey="Sykes R" first="Robert W" last="Sykes">Robert W. Sykes</name>
</author>
<author>
<name sortKey="Burris, Jason N" sort="Burris, Jason N" uniqKey="Burris J" first="Jason N" last="Burris">Jason N. Burris</name>
</author>
<author>
<name sortKey="Bozell, Joseph J" sort="Bozell, Joseph J" uniqKey="Bozell J" first="Joseph J" last="Bozell">Joseph J. Bozell</name>
</author>
<author>
<name sortKey="Cheng, Max Zong Ming" sort="Cheng, Max Zong Ming" uniqKey="Cheng M" first="Max Zong-Ming" last="Cheng">Max Zong-Ming Cheng</name>
</author>
<author>
<name sortKey="Hayes, Douglas G" sort="Hayes, Douglas G" uniqKey="Hayes D" first="Douglas G" last="Hayes">Douglas G. Hayes</name>
</author>
<author>
<name sortKey="Labbe, Nicole" sort="Labbe, Nicole" uniqKey="Labbe N" first="Nicole" last="Labbe">Nicole Labbe</name>
</author>
<author>
<name sortKey="Davis, Mark" sort="Davis, Mark" uniqKey="Davis M" first="Mark" last="Davis">Mark Davis</name>
</author>
<author>
<name sortKey="Stewart, C Neal" sort="Stewart, C Neal" uniqKey="Stewart C" first="C Neal" last="Stewart">C Neal Stewart</name>
</author>
<author>
<name sortKey="Yuan, Joshua S" sort="Yuan, Joshua S" uniqKey="Yuan J" first="Joshua S" last="Yuan">Joshua S. Yuan</name>
</author>
</analytic>
<series>
<title level="j">BMC bioinformatics</title>
<idno type="eISSN">1471-2105</idno>
<imprint>
<date when="2009" type="published">2009</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Arabidopsis (genetics)</term>
<term>Evolution, Molecular (MeSH)</term>
<term>Gene Duplication (MeSH)</term>
<term>Gene Expression Regulation, Plant (MeSH)</term>
<term>Genes, Plant (MeSH)</term>
<term>Genome, Plant (MeSH)</term>
<term>Lignin (biosynthesis)</term>
<term>Oryza (genetics)</term>
<term>Phylogeny (MeSH)</term>
<term>Plant Proteins (genetics)</term>
<term>Plant Proteins (metabolism)</term>
<term>Plants (genetics)</term>
<term>Poaceae (genetics)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Arabidopsis (génétique)</term>
<term>Duplication de gène (MeSH)</term>
<term>Gènes de plante (MeSH)</term>
<term>Génome végétal (MeSH)</term>
<term>Lignine (biosynthèse)</term>
<term>Oryza (génétique)</term>
<term>Phylogenèse (MeSH)</term>
<term>Plantes (génétique)</term>
<term>Poaceae (génétique)</term>
<term>Protéines végétales (génétique)</term>
<term>Protéines végétales (métabolisme)</term>
<term>Régulation de l'expression des gènes végétaux (MeSH)</term>
<term>Évolution moléculaire (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="biosynthesis" xml:lang="en">
<term>Lignin</term>
</keywords>
<keywords scheme="MESH" qualifier="biosynthèse" xml:lang="fr">
<term>Lignine</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Arabidopsis</term>
<term>Oryza</term>
<term>Plant Proteins</term>
<term>Plants</term>
<term>Poaceae</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Arabidopsis</term>
<term>Oryza</term>
<term>Plantes</term>
<term>Poaceae</term>
<term>Protéines végétales</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Plant Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Protéines végétales</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Evolution, Molecular</term>
<term>Gene Duplication</term>
<term>Gene Expression Regulation, Plant</term>
<term>Genes, Plant</term>
<term>Genome, Plant</term>
<term>Phylogeny</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Duplication de gène</term>
<term>Gènes de plante</term>
<term>Génome végétal</term>
<term>Phylogenèse</term>
<term>Régulation de l'expression des gènes végétaux</term>
<term>Évolution moléculaire</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>BACKGROUND</b>
</p>
<p>As a major component of plant cell wall, lignin plays important roles in mechanical support, water transport, and stress responses. As the main cause for the recalcitrance of plant cell wall, lignin modification has been a major task for bioenergy feedstock improvement. The study of the evolution and function of lignin biosynthesis genes thus has two-fold implications. First, the lignin biosynthesis pathway provides an excellent model to study the coordinative evolution of a biochemical pathway in plants. Second, understanding the function and evolution of lignin biosynthesis genes will guide us to develop better strategies for bioenergy feedstock improvement.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>RESULTS</b>
</p>
<p>We analyzed lignin biosynthesis genes from fourteen plant species and one symbiotic fungal species. Comprehensive comparative genome analysis was carried out to study the distribution, relatedness, and family expansion of the lignin biosynthesis genes across the plant kingdom. In addition, we also analyzed the comparative synteny map between rice and sorghum to study the evolution of lignin biosynthesis genes within the Poaceae family and the chromosome evolution between the two species. Comprehensive lignin biosynthesis gene expression analysis was performed in rice, poplar and Arabidopsis. The representative data from rice indicates that different fates of gene duplications exist for lignin biosynthesis genes. In addition, we also carried out the biomass composition analysis of nine Arabidopsis mutants with both MBMS analysis and traditional wet chemistry methods. The results were analyzed together with the genomics analysis.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>CONCLUSION</b>
</p>
<p>The research revealed that, among the species analyzed, the complete lignin biosynthesis pathway first appeared in moss; the pathway is absent in green algae. The expansion of lignin biosynthesis gene families correlates with substrate diversity. In addition, we found that the expansion of the gene families mostly occurred after the divergence of monocots and dicots, with the exception of the C4H gene family. Gene expression analysis revealed different fates of gene duplications, largely confirming plants are tolerant to gene dosage effects. The rapid expansion of lignin biosynthesis genes indicated that the translation of transgenic lignin modification strategies from model species to bioenergy feedstock might only be successful between the closely relevant species within the same family.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">19811687</PMID>
<DateCompleted>
<Year>2010</Year>
<Month>02</Month>
<Day>12</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">1471-2105</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>10 Suppl 11</Volume>
<PubDate>
<Year>2009</Year>
<Month>Oct</Month>
<Day>08</Day>
</PubDate>
</JournalIssue>
<Title>BMC bioinformatics</Title>
<ISOAbbreviation>BMC Bioinformatics</ISOAbbreviation>
</Journal>
<ArticleTitle>Comparative genome analysis of lignin biosynthesis gene families across the plant kingdom.</ArticleTitle>
<Pagination>
<MedlinePgn>S3</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1186/1471-2105-10-S11-S3</ELocationID>
<Abstract>
<AbstractText Label="BACKGROUND" NlmCategory="BACKGROUND">As a major component of plant cell wall, lignin plays important roles in mechanical support, water transport, and stress responses. As the main cause for the recalcitrance of plant cell wall, lignin modification has been a major task for bioenergy feedstock improvement. The study of the evolution and function of lignin biosynthesis genes thus has two-fold implications. First, the lignin biosynthesis pathway provides an excellent model to study the coordinative evolution of a biochemical pathway in plants. Second, understanding the function and evolution of lignin biosynthesis genes will guide us to develop better strategies for bioenergy feedstock improvement.</AbstractText>
<AbstractText Label="RESULTS" NlmCategory="RESULTS">We analyzed lignin biosynthesis genes from fourteen plant species and one symbiotic fungal species. Comprehensive comparative genome analysis was carried out to study the distribution, relatedness, and family expansion of the lignin biosynthesis genes across the plant kingdom. In addition, we also analyzed the comparative synteny map between rice and sorghum to study the evolution of lignin biosynthesis genes within the Poaceae family and the chromosome evolution between the two species. Comprehensive lignin biosynthesis gene expression analysis was performed in rice, poplar and Arabidopsis. The representative data from rice indicates that different fates of gene duplications exist for lignin biosynthesis genes. In addition, we also carried out the biomass composition analysis of nine Arabidopsis mutants with both MBMS analysis and traditional wet chemistry methods. The results were analyzed together with the genomics analysis.</AbstractText>
<AbstractText Label="CONCLUSION" NlmCategory="CONCLUSIONS">The research revealed that, among the species analyzed, the complete lignin biosynthesis pathway first appeared in moss; the pathway is absent in green algae. The expansion of lignin biosynthesis gene families correlates with substrate diversity. In addition, we found that the expansion of the gene families mostly occurred after the divergence of monocots and dicots, with the exception of the C4H gene family. Gene expression analysis revealed different fates of gene duplications, largely confirming plants are tolerant to gene dosage effects. The rapid expansion of lignin biosynthesis genes indicated that the translation of transgenic lignin modification strategies from model species to bioenergy feedstock might only be successful between the closely relevant species within the same family.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Xu</LastName>
<ForeName>Zhanyou</ForeName>
<Initials>Z</Initials>
<AffiliationInfo>
<Affiliation>Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Zhang</LastName>
<ForeName>Dandan</ForeName>
<Initials>D</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Hu</LastName>
<ForeName>Jun</ForeName>
<Initials>J</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Zhou</LastName>
<ForeName>Xin</ForeName>
<Initials>X</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Ye</LastName>
<ForeName>Xia</ForeName>
<Initials>X</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Reichel</LastName>
<ForeName>Kristen L</ForeName>
<Initials>KL</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Stewart</LastName>
<ForeName>Nathan R</ForeName>
<Initials>NR</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Syrenne</LastName>
<ForeName>Ryan D</ForeName>
<Initials>RD</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Yang</LastName>
<ForeName>Xiaohan</ForeName>
<Initials>X</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Gao</LastName>
<ForeName>Peng</ForeName>
<Initials>P</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Shi</LastName>
<ForeName>Weibing</ForeName>
<Initials>W</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Doeppke</LastName>
<ForeName>Crissa</ForeName>
<Initials>C</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Sykes</LastName>
<ForeName>Robert W</ForeName>
<Initials>RW</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Burris</LastName>
<ForeName>Jason N</ForeName>
<Initials>JN</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Bozell</LastName>
<ForeName>Joseph J</ForeName>
<Initials>JJ</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Cheng</LastName>
<ForeName>Max Zong-Ming</ForeName>
<Initials>MZ</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Hayes</LastName>
<ForeName>Douglas G</ForeName>
<Initials>DG</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Labbe</LastName>
<ForeName>Nicole</ForeName>
<Initials>N</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Davis</LastName>
<ForeName>Mark</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Stewart</LastName>
<ForeName>C Neal</ForeName>
<Initials>CN</Initials>
<Suffix>Jr</Suffix>
</Author>
<Author ValidYN="Y">
<LastName>Yuan</LastName>
<ForeName>Joshua S</ForeName>
<Initials>JS</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D003160">Comparative Study</PublicationType>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2009</Year>
<Month>10</Month>
<Day>08</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>BMC Bioinformatics</MedlineTA>
<NlmUniqueID>100965194</NlmUniqueID>
<ISSNLinking>1471-2105</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010940">Plant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>9005-53-2</RegistryNumber>
<NameOfSubstance UI="D008031">Lignin</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D017360" MajorTopicYN="N">Arabidopsis</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019143" MajorTopicYN="N">Evolution, Molecular</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020440" MajorTopicYN="N">Gene Duplication</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018506" MajorTopicYN="N">Gene Expression Regulation, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017343" MajorTopicYN="Y">Genes, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018745" MajorTopicYN="Y">Genome, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008031" MajorTopicYN="N">Lignin</DescriptorName>
<QualifierName UI="Q000096" MajorTopicYN="Y">biosynthesis</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012275" MajorTopicYN="N">Oryza</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010802" MajorTopicYN="N">Phylogeny</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010940" MajorTopicYN="N">Plant Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010944" MajorTopicYN="N">Plants</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006109" MajorTopicYN="N">Poaceae</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2009</Year>
<Month>10</Month>
<Day>9</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2009</Year>
<Month>10</Month>
<Day>14</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2010</Year>
<Month>2</Month>
<Day>13</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">19811687</ArticleId>
<ArticleId IdType="pii">1471-2105-10-S11-S3</ArticleId>
<ArticleId IdType="doi">10.1186/1471-2105-10-S11-S3</ArticleId>
<ArticleId IdType="pmc">PMC3226193</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Plant J. 2008 Aug;55(3):491-503</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18433439</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2008 Aug;13(8):421-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18632303</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Bioinformatics. 2007;8 Suppl 7:S6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18047729</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2008 Apr;13(4):165-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18329321</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 Dec 14;101(50):17555-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15574502</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Biochem Biotechnol. 2006 Spring;129-132:427-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16915659</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2002 Jul;129(3):993-1002</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12114555</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Bioinformatics. 2006;7:85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16504059</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2004 Sep;45(9):1111-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15509833</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2003 Jun 24;100(13):8007-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12808149</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biotechnol J. 2006 Jan;4(1):103-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17177789</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2006 Nov;142(3):820-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16980566</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2006 Apr;24(4):395-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16601716</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2009 Jan;5(1):e1000264</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19148278</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Prog. 2006 May-Jun;22(3):609-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16739940</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2007 Oct 12;318(5848):245-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17932292</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2009 Jan 27;19(2):169-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19167225</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2002 Jun;5(3):224-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11960740</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2008 Nov;148(3):1229-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18805953</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 Nov 15;102(46):16573-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16263933</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1993 Jan;5(1):9-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8439747</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2008 Jun 3;105(22):7887-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18505841</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 2003 Oct 23;317(1-2):203-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14604809</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2003;54:519-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14503002</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2008 Jul 1;36(Web Server issue):W465-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18424797</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Struct Funct Genomics. 2003;3(1-4):35-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12836683</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2009 Jan 29;457(7229):551-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19189423</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2007;173(1):63-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17176394</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Funct Integr Genomics. 2007 Jan;7(1):1-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16897088</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2005 Jul;17(7):2059-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15937231</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biotechnol J. 2003 Nov;1(6):437-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17134402</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2005 Aug 11;436(7052):793-800</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16100779</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2005 Jul 26;15(14):1325-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16051178</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 May 3;102 Suppl 1:6630-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15851668</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol J. 2008 Jan;3(1):112-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18074404</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2006 Mar 31;281(13):8843-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16421107</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2007 Jul;25(7):759-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17572667</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Adv Genet. 2002;46:451-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11931235</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1989 Aug;86(16):6201-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2762323</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Biotechnol. 2005 Apr;16(2):159-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15831381</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2008 Jan 4;319(5859):64-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18079367</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2003 Nov;133(3):1051-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14612585</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1994 Nov 11;22(22):4673-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7984417</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2007 Sep 6;449(7158):54-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17805289</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2007 Sep;12(9):391-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17698402</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2003 Dec;8(12):576-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14659706</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2009 Jun;182(4):878-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19291008</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2004 Dec 24;306(5705):2206-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15618507</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2008 Jan;4(1):e11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18208334</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Texas</li>
</region>
</list>
<tree>
<noCountry>
<name sortKey="Bozell, Joseph J" sort="Bozell, Joseph J" uniqKey="Bozell J" first="Joseph J" last="Bozell">Joseph J. Bozell</name>
<name sortKey="Burris, Jason N" sort="Burris, Jason N" uniqKey="Burris J" first="Jason N" last="Burris">Jason N. Burris</name>
<name sortKey="Cheng, Max Zong Ming" sort="Cheng, Max Zong Ming" uniqKey="Cheng M" first="Max Zong-Ming" last="Cheng">Max Zong-Ming Cheng</name>
<name sortKey="Davis, Mark" sort="Davis, Mark" uniqKey="Davis M" first="Mark" last="Davis">Mark Davis</name>
<name sortKey="Doeppke, Crissa" sort="Doeppke, Crissa" uniqKey="Doeppke C" first="Crissa" last="Doeppke">Crissa Doeppke</name>
<name sortKey="Gao, Peng" sort="Gao, Peng" uniqKey="Gao P" first="Peng" last="Gao">Peng Gao</name>
<name sortKey="Hayes, Douglas G" sort="Hayes, Douglas G" uniqKey="Hayes D" first="Douglas G" last="Hayes">Douglas G. Hayes</name>
<name sortKey="Hu, Jun" sort="Hu, Jun" uniqKey="Hu J" first="Jun" last="Hu">Jun Hu</name>
<name sortKey="Labbe, Nicole" sort="Labbe, Nicole" uniqKey="Labbe N" first="Nicole" last="Labbe">Nicole Labbe</name>
<name sortKey="Reichel, Kristen L" sort="Reichel, Kristen L" uniqKey="Reichel K" first="Kristen L" last="Reichel">Kristen L. Reichel</name>
<name sortKey="Shi, Weibing" sort="Shi, Weibing" uniqKey="Shi W" first="Weibing" last="Shi">Weibing Shi</name>
<name sortKey="Stewart, C Neal" sort="Stewart, C Neal" uniqKey="Stewart C" first="C Neal" last="Stewart">C Neal Stewart</name>
<name sortKey="Stewart, Nathan R" sort="Stewart, Nathan R" uniqKey="Stewart N" first="Nathan R" last="Stewart">Nathan R. Stewart</name>
<name sortKey="Sykes, Robert W" sort="Sykes, Robert W" uniqKey="Sykes R" first="Robert W" last="Sykes">Robert W. Sykes</name>
<name sortKey="Syrenne, Ryan D" sort="Syrenne, Ryan D" uniqKey="Syrenne R" first="Ryan D" last="Syrenne">Ryan D. Syrenne</name>
<name sortKey="Yang, Xiaohan" sort="Yang, Xiaohan" uniqKey="Yang X" first="Xiaohan" last="Yang">Xiaohan Yang</name>
<name sortKey="Ye, Xia" sort="Ye, Xia" uniqKey="Ye X" first="Xia" last="Ye">Xia Ye</name>
<name sortKey="Yuan, Joshua S" sort="Yuan, Joshua S" uniqKey="Yuan J" first="Joshua S" last="Yuan">Joshua S. Yuan</name>
<name sortKey="Zhang, Dandan" sort="Zhang, Dandan" uniqKey="Zhang D" first="Dandan" last="Zhang">Dandan Zhang</name>
<name sortKey="Zhou, Xin" sort="Zhou, Xin" uniqKey="Zhou X" first="Xin" last="Zhou">Xin Zhou</name>
</noCountry>
<country name="États-Unis">
<region name="Texas">
<name sortKey="Xu, Zhanyou" sort="Xu, Zhanyou" uniqKey="Xu Z" first="Zhanyou" last="Xu">Zhanyou Xu</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 003680 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 003680 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:19811687
   |texte=   Comparative genome analysis of lignin biosynthesis gene families across the plant kingdom.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:19811687" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020